
Chapter 11

Randomized Algorithms

The theme of this chapter is
randomized

madendrizo algorithms. These are algorithms that make use of ran-
domness in their computation. You might know of quicksort, which is efficient on average
when it uses a random pivot, but can be bad for any pivot that is selected without randomness.

Even though analyzing randomized algorithms can be difficult, randomization turns out to
be a crucial technique for algorithm design, making the extra effort well worth. For example,
for some problems randomized algorithms are simpler or faster than non-randomized algo-
rithms. The problem of primality testing (PT), which is to determine if an integer is prime, is
a good example. In the late 70s Miller and Rabin developed a famous and simple random-
ized algorithm for the problem that only requires polynomial work. For over 20 years it was
not known whether the problem could be solved in polynomial work without randomization.
Eventually a polynomial time algorithm was developed, but it is much more complicated and
computationally more costly than the randomized version. Hence in practice everyone still
uses the randomized version.

There are many other problems in which a randomized solution is simpler or cheaper than
the best non-randomized solution. In this chapter, after covering the prerequisite background,
we will consider some such problems. The first we will consider is the following simple prob-
lem:

Question: How many comparisons do we need to find the top two largest numbers
in a sequence of n distinct numbers?

Without the help of randomization, there is a trivial algorithm for finding the top two largest
numbers in a sequence that requires about 2n − 3 comparisons. We show, however, that if the
order of the input is randomized, then the same algorithm uses only n+O(log n) comparisons
in expectation (on average). This matches a more complicated deterministic version based on
tournaments.

Randomization plays a particularly important role in developing parallel algorithms, and
analyzing such algorithms introduces some new challenges. In this chapter we will look at two
randomized algorithms with significant parallelism: one for finding the kth order statistics of a

183



184 CHAPTER 11. RANDOMIZED ALGORITHMS

sequences, and the other is quicksort. In future chapters we will cover many other randomized
algorithms.

In this book we require that randomized algorithms always return the correct answer, but
their costs (work and span) will depend on random choices. Such algorithms are sometimes
called Las Vegas algorithms. Algorithms that run in a fixed amount of time, but may or
may not return the correct answer, depending on random choices, are called Monte Carlo
algorithms.

11.1 Expectation versus High Probability

In analyzing costs for a randomized algorithms there are two types of bounds that are useful:
expected bounds, and high-probability bounds.

Expected bounds tell us about the average cost across all random choices made by the algo-
rithm. For example if an algorithm has Θ(n) expected work, it means that on averaged over all
random choices it makes in all runs, the algorithm performs Θ(n) work. Since expected bounds
are averaged over all random choices in all possible runs, there can be runs that require more
or less work. For example once in every 1/n tries the algorithm might require Θ(n2) work, and
(or) once in every

√
n tries the algorithm might require Θ(n3/2) work.

High-probability bounds on the other hand tell us that it is very unlikely that the cost
will be above some bound. For a problem of size n we say that some property is true with
high probability if it is true with probability 1 − 1/nk for some constant k > 1. This means
the inverse is true with very small probability 1/nk. Now if we had n experiments each with
inverse probability 1/nk we can use the union bound to argue that the total inverse probability
is n · 1/nk = 1/nk−1. This means that for k > 2 the probability 1− 1/nk−1 is still true with high
probability. High-probability bounds are typically stronger than expectation bounds.

Expected bounds are quite convenient when analyzing work (or running time in traditional
sequential algorithms). This is because the linearity of expectations (Chapter 10) allows adding
expectations across the components of an algorithm to get the overall expected work. For
example, if the algorithm performs n tasks each of which take on average 2 units of work, then
the total work on average across all tasks will be n × 2 = 2n units. Unfortunately this kind
of composition does not work when analyzing the span of an algorithm, because this requires
taking the maximum of random variables, rather than their sum. For example, if we had n
tasks each of which has expected span of 2 units of time, we cannot say that the expected span
across all tasks is 2 units. It could be that most of the time each task has a span of 2 units, but
that once with probability 1/n, the task requires n units. The expected span for each task is still
close to 2 units but if we have n tasks chances are high that one task will take n units and the
expected maximum will be close to n rather than 2. We therefore cannot compose the expected
span from each task by taking a maximum.

Unlike expected bounds, high-probability bounds can allow us to bound span. For exam-
ple, lets say we know that every task finishes in 2 units of time with probability 1 − 1/n5, or
equivalently that each task takes more than 2 units of time with probability 1/n5 and takes at
most n units of time otherwise. Now with n tasks the probability that there will be at least one

January 16, 2018 (DRAFT, PPAP)



11.2. FINDING THE TWO LARGEST 185

Figure 11.1: Every year around the mid-
dle of April the Computer Science De-
partment at Carnegie Mellon University
holds an event called the “Random Dis-
tance Run”. It is a running event around
the track, where the official dice tosser
rolls a dice immediately before the race
is started. The dice indicates how many
initial laps everyone has to run. When
the first person is about to complete the
laps, a second dice is thrown indicating
how many more laps everyone has to run.
Clearly, some understanding of probabil-
ity can help one decide how to practice for
the race and how fast to run at the start.
Thanks to Tom Murphy for the design of
the 2007 T-shirt.

that requires more than 2 units of time is at most 1/n4 by union bound. Furthermore, when it
does, the contribution to the expectation is 1/n3. Because of these properties of summing vs.
taking a maximum, in this book we often analyze work using expectation, but analyze span
using high probability.

11.2 Finding The Two Largest

The max-two problem is to find the two largest elements from a sequence of n (unique) num-
bers. Lets consider the following simple iterative algorithm for the problem.

Algorithm 11.1. [Iterative Max-Two]

1 max2 a =

2 let
3 update ((m1,m2), v) =

4 if v ≤ m2 then (m1,m2)

5 else if v ≤ m1 then (m1, v)

6 else (v,m1)

7 init = if a[0] ≥ a[1] then (a[0], a[1]) else (a[1], a[0])

8 in
9 iter update init a[2, . . . , n− 1]

10 end

January 16, 2018 (DRAFT, PPAP)



186 CHAPTER 11. RANDOMIZED ALGORITHMS

In the following analysis, we will be meticulous about constants. This iterative algorithm
requires up to 1 + 2(n − 2) = 2n − 3 comparisons since there is one comparison in init and
since each of the n − 2 update’s requires up to two comparisons. On the surface, this may
seem like the best one can do. Surprisingly, there is a divide-and-conquer algorithm that uses
only about 3n/2 comparisons (exercise to the reader). More surprisingly still is the fact that it
can be done in n+O(log n) comparisons. But how?

A closer look at the analysis above reveals that we were pessimistic about the number of
comparisons; not all elements will get past the “if” statement in Line ??; therefore, only some
of the elements will need the comparison in Line ??. But we didn’t know how many of them,
so we analyzed it in the worst possible scenario.

Let’s try to understand what’s happening better by looking at the worst-case input. It is not
difficult to convince yourself that an increasing sequence of length n, e.g., 〈1, 2, 3, . . . , n〉 leads
to 2n− 3 comparisons. As we iterate from left to right, we find a new maximum for each new
element—this new element gets compared in both Lines 4 and 5.

But perhaps it’s unlikely to get such a deliberately structured sequence if we consider the
elements in random order. With only 1 in n! chance, a sequence will be fully sorted. You can
work out the probability that the random order will result in a sequence that looks “approx-
imately” sorted, and it would not be too high. Thus we can reasonably hope to save a lot of
comparisons in Line ?? by considering elements in random order.

Let’s thus analyze the following algorithm: on input a sequence t of n elements:

1. Let a = permute(t, π), where π is a random permutation (i.e., we choose one of the n!
permutations).

2. Run algorithm max2 on a.

Note that we don’t need to explicitly construct a. All we need instead is to pick a random
element that hasn’t been considered and consider that element next. For the analysis, it is
convenient to describe the process in terms of a randomly permuted sequence.

After applying the random permutation we have that our sample space Ω corresponds to
each permutation. Since there are n! permutations on a sequence of length n and each has
equal probability, we have |Ω| = n! and Pr [x] = 1/n!, x ∈ Ω. However, as we will see, we do
not really need to know this, all we need to know is what fraction of the sample space obeys
some property.

Let i be the position in a (indexed from 1 to n). Now let Xi be an indicator random variable
denoting whether Line ?? and hence its comparison gets executed for the value at Si (i.e., Recall
that an indicator random variable is actually a function that maps each primitive event (each
permutation in our case) to 0 or 1. In particular given a permutation, it returns 1 iff for that
permutation the comparison on Line 5 gets executed on iteration i. Lets say we want to now
compute the total number of comparisons. We can define another random variable (function)
Y that for any permutation returns the total number of comparisons the algorithm takes on

January 16, 2018 (DRAFT, PPAP)



11.2. FINDING THE TWO LARGEST 187

that permutation. This can be defined as

Y = 1︸︷︷︸
Line 7

+ n− 2︸ ︷︷ ︸
Line 4

+
n∑

i=3

Xi︸ ︷︷ ︸
Line 5

.

We are interested in computing the expected value of Y . By linearity of expectation, we
have

E [Y ] = E

[
1 + (n− 2) +

n∑
i=3

Xi

]

= 1 + (n− 2) +
n∑

i=3

E [Xi] .

Our tasks therefore boils down to computing E [Xi] for i = 3, . . . , n. To compute this expecta-
tion, we ask ourselves: What is the probability that ai > m2? A moment’s thought shows that
the condition ai > m2 holds exactly when ai is either the largest element or the second largest
element in {a1, . . . , ai}. So ultimately we’re asking: what is the probability that ai is the largest
or the second largest element in randomly-permuted sequence of length i?

To compute this probability, we note that each element in the sequence is equally likely to
be anywhere in the permuted sequence (we chose a random permutation. In particular, if we
look at the k-th largest element, it has 1/i chance of being at ai. (You should also try to work it
out using a counting argument.) Therefore, the probability that ai is the largest or the second
largest element in {a1, . . . , ai} is 1

i + 1
i = 2

i , so

E [Xi] = 1 · 2i = 2/i.

Plugging this into the expression for E [Y ], we obtain

E [Y ] = 1 + (n− 2) +
n∑

i=3

E [Xi]

= 1 + (n− 2) +
n∑

i=3

2

i

= 1 + (n− 2) + 2
(
1
3 + 1

4 + . . . 1n

)
= n− 4 + 2

(
1 + 1

2 + 1
3 + 1

4 + . . . 1n

)
= n− 4 + 2Hn,

where Hn is the n-th Harmonic number. But we know that Hn ≤ 1 + lg n, so we get E [Y ] ≤
n− 2 + 2 lg n. We can also use the following bound on Harmonic sums:

H(n) = O(lg n+ 1),

or more precisely

Hn = 1 +
1

2
+ · · ·+ 1

n
= lnn+ γ + εn,

January 16, 2018 (DRAFT, PPAP)



188 CHAPTER 11. RANDOMIZED ALGORITHMS

where γ is the Euler-Mascheroni constant, which is approximately 0.57721 · · · , and εn ∼ 1
2n ,

which tends to 0 as n approaches ∞. This shows that the summation and integral of 1/i are
almost identical (up to a small adative constant and a low-order vanishing term).

Remark 11.2. Reducing the number of comparisons by approximately a factor of two
might not lead to a significant gain in performance in practice. For example, if the com-
parison function is a constant-time, simple comparison function the 2n − 3 algorithm
and the n−1+2 log n algorithm are unlikely to be significant. For most cases, the 2n−3
algorithm might in fact be faster to due better locality.

The point of this example is to demonstrate the power of randomness in achieving
something that otherwise seems impossible—more importantly, the analysis hints at
why on a typical “real-world” instance, the 2n − 3 algorithm does much better than
what we analyzed in the worst case (real-world instances are usually not adversarial).

11.3 Order statistics

In statistics, computing the order statistics of sample, which we may represent as a sequence,
has many important applications. We can precisely state the problem as follows.

Problem 11.3. [Order statistics] Given an a sequence and an integer kwhere 0 ≤ k < |a|,
and a comparison < defining a total ordering over the elements of the sequence, find
the kth order statistics, i.e., kth smallest element, in the sequences.

We can solve this problem by sorting first and selecting the kth element but this would
require O(n log n) work, assuming that comparisons require constant work. We wish to do
better; in particular we would like to achieve linear work and still achieve O(log2 n) span. For
the purposes of simplicity, let’s assume that sequences consist of unique elements and consider
the following simple algorithm. Based on the contraction design technique, the algorithm uses
randomization to contract the problem to a smaller instance.

Algorithm 11.4. [contracting kth smallest]

select a k =

let
p = a[0]

` = 〈x ∈ a | x < p 〉
r = 〈x ∈ b | x > p 〉

in
if (k < |`|) then select ` k

else if (k < |a| − |r|) then p

else select r (k − (|a| − |r|))

January 16, 2018 (DRAFT, PPAP)



11.3. ORDER STATISTICS 189

Example 11.5. Example runs of select illustrated by a “pivot tree.” For illustrative
purposes, we show all possible recursive calls being explored down to singleton se-
quences. In reality, the algorithm explores only one path. The path highlighted with
red is the path of recursive calls taken by select when searching for the first-order
statistics, k = 0. The path highlighted with brown is the path of recursive calls taken by
select when searching for the fifth-order statistics, k = 4. The path highlighted with
green is the path of recursive calls taken by select when searching for the eight-order
statistics, k = 7.

3

2

1

6

5

4

7

8

Keys

Example Run

< 3, 2, 6, 1, 5, 7, 4, 8 >

< 6, 5, 7, 4, 8>< 2, 1 >

< 1 > < 7, 8 >< 5, 4>

< 4 > < 8 >

The algorithm divides the input into left and right sequences, ` and r, and figures out the side
kth smallest must be in, and recursively explores that side. When exploring the right side, r,
the parameter k needs to be adjusted by since all elements less or equal to the pivot p are being
thrown out: there are |a| − |r| such elements.

As written the algorithm picks as pivot the first key in the sequence instead of a random
key. As with the two-largest problem, we can add randomness by first randomly permuting a
sequence t to generate the input sequence a and then applying select on a. This is equivalent
to randomly picking a pivot at each step of contraction.

Let’s analyze the work and span of the randomized algorithm where we pick pivots uni-
formly randomly. Let n = |a| and define X(n) = max{|`|, |r|}/|a|, which is the fractional size
of the larger side. Notice that X is an upper bound on the fractional size of the side the algo-
rithm actually recurs into. Now since lines 3 and 4 are simply two filter calls, we have the
following recurrences:

W (n) ≤ W (X(n) · n) + O(n)

S(n) ≤ S(X(n) · n) + O(log n)

Let’s first look at the work recurrence. Specifically, we are interested in E [W (n)]. First, let’s
try to get a sense of what happens in expectation.

The key quantity in bounding th expectation is bounding E [X(n)]. To this end, let’s none
first that all pivots are equally likely. We can thus draw the following plot of the size of ` and

January 16, 2018 (DRAFT, PPAP)



190 CHAPTER 11. RANDOMIZED ALGORITHMS

size of r as a function of where the pivot belongs in the sorted order of a.

r

lmax(l, r)

n0

n

If the pivot is at the start then ` is empty and |r| = |a| − 1, and if the pivot is at the end then r
is empty and |`| = |a| − 1. Since the probability that we land on a point on the x axis is 1/n, we
can write the expectation for X(n) as

E [X(n)] =
1

n

n−1∑
i=0

max{i, n− i− 1}
n

≤ 1

n

n−1∑
j=n/2

2

n
· j ≤ 3

4

(Recall that
∑y

i=x i = 1
2(x+ y)(y − x+ 1).)

This calculation tells us that in expectation, X(n) is a constant fraction smaller than 1, so in-
tuitively in calculating the work we should have a nice geometrically decreasing sum that adds
up to O(n). It is not quite so simple, however, since the constant fraction is only in expectation.
It could also be we are unlucky for a few contraction steps and the sequences size hardly goes
down at all. We will cover other algorithms on graphs that have the same property, i.e. that the
size goes down by an expected constant factor on each contraction step. The following theo-
rem shows that even if we are unlucky on some steps, the expected size will indeed go down
geometrically. Together with the linearity of expectations this will allow us to bound the work.
Note that the proof of this theorem would have been relatively easy if the successive choices
made by the algorithm were independent but they are not, because the size to the algorithm at
each recursive call depends on prior choices of pivots.

Theorem 11.6. Starting with size n, the expected size of a in algorithm select after d recursive calls
is
(
3
4

)d
n.

Proof. The proof is by induction on the depth of the recursion d. In the base case, d = 0 and
the lemma holds trivially. For the inductive case assume that the lemma holds for some d ≥ 0.
Consider now the (d + 1)th recursive call. Let Yd be the random variable denoting the size of
the input to the dth recursive call and let Z the pivot chosen at the dth call. For any value of y
and z, let f(y, z) be the fraction of the input reduced by the choice of the pivot at position z for

January 16, 2018 (DRAFT, PPAP)



11.3. ORDER STATISTICS 191

an input of size y. We can write the expectation for the input size at (d+ 1)st call as

E[Yd+1] =
∑

y,z yf(y, z)PY,Z(y, z)

=
∑

y

∑
z yf(y, z)PY (y)PZ | Y (z | y)

=
∑

y yPY (y)
∑

z f(y, z)PZ | Y (z | y)

≤
∑

y yPY (y) E [X(y)].

≤ 3
4

∑
y yPY (y).

≤ 3
4 E [Yd] .

Note that we have used the bound

E [X(y)] =
∑
z

f(y, z)PZ | Y (z | y) ≤ 3

4
,

which we established above.

We thus conclude that E [Yd+1] = 3
4 E [Yd], which this trivially solves to the bound given in

the theorem, since at d = 0 the input size is n.

The work at each level of the recursive calls is linear in the size of the input and thus can be
written as Wselect(n) ≤ k1n + k2, where n is the input size. Since at least one element, the
pivot, is taken out of the input for the recursive call at each level, there are at most n levels of
recursion, and thus, we can bound the expected work as

E [Wselect(n)] ≤
n∑

i=0

(k1 E [Yi] + k2)

E [Wselect(n)] ≤
n∑

i=0

(k1n

(
3

4

)i

+ k2)

≤ k1n

(
n∑

i=0

(
3

4

)i
)

+ k2n

≤ 4k1n+ k2n

∈ O(n).

Expected Span. We can bound the span of the algorithm by O(n lg n) trivially in the worst
case, but we expect the average span to be a lot better because chances of picking a poor pivot
over and over again, which would be required for the linear span is unlikely. To bound the
span in the expected case, we shall use Theorem 11.6 to bound the number of levels taken by
select more tightly using a high probability bound.

Consider depth d = 10 lg n. At this depth, the expected size upper bounded by n
(
3
4

)10 lgn.
With a little math this is equal to n × n−10 lg(4/3) ≈ n−3.15. Now, by Markov’s inequality, if the
expected size is at most n−3.15 then the probability of having size at least 1 is bounded by

Pr [Y10 lgn ≥ 1] ≤ E[Y10 lgn]/1 = n−3.15.

January 16, 2018 (DRAFT, PPAP)



192 CHAPTER 11. RANDOMIZED ALGORITHMS

In applying Markov’s inequality, we choose 1, because we know that the algorithm terminates
for that input size. By increasing the constant factor from 10 to 20 would decrease the proba-
bility to n−7.15, which is extremely unlikely: for n = 106 this is 10−42. We have therefore shown
that the number of steps is O(log n) with high probability. Each step has span O(log n) so the
overall span is O(log2 n) with high probability.

Using the high probability bound, we can bound the expected span by using the total ex-
pectation theorem. For brevity let the random variable Y be defined as Y = Y10 lgn,

E [S] =
∑

y PY (y) E [S | Y = y] .

=
∑

y≤1PY (y) E [S | Y = y] +
∑

y>1PY (y) E [S | Y = y]

≤ (1− n−3.5)O(lg2 n) + n−3.5O(n)
= O(lg2 n).

The expected bound follows by the fact that with high probability the depth of the recursive
calls is O(lg n) and that each recursive call has O(lg n) span, because it requires a sequences
filter. The span for the case when the span is not greater that 10 lg n contributes only a
constant value to the expectation as long as it is a polynomial that is less that n3.5.

In summary, we have shown than the select algorithm on input of size n does O(n) work
in expectation and has O(log2 n) span with high probability. As mentioned at the start of the
chapter, we will typically be analyzing work using expectation and span using high probability.

11.4 Quicksort

Moving on to a more complex algorithm, let’s analyze the work and span of the randomized
quicksort algorithm. In later chapters we will see that the analysis of quicksort presented here
is is effectively identical to the analysis of a certain type of balanced tree called Treaps. It is also
the same as the analysis of “unbalanced” binary search trees under random insertion.

Consider the quicksort algorithm given in Algorithm 11.7. In this algorithm, we intention-
ally leave the pivot-choosing step unspecified because the property we are discussing holds
regardless of the choice of the pivot.

There is plenty of parallelism in this version quicksort. There is both parallelism due to the
two recursive calls and in the fact that the filters for selecting elements greater, equal, and less
than the pivot can be parallel.

Note that each call to quicksort either makes no recursive calls (the base case) or two re-
cursive calls. The call tree is therefore binary. We will often find it convenient to map the
run of a quicksort to a binary-search tree (BST) representing the recursive calls along with the
pivots chosen. We will sometimes refer to this tree as the call tree or pivot tree. We will use
this call-tree representation to reason about the properties of quicksort, e.g., the comparisons
performed, its span. An example is shown in Example 11.8.

Let’s consider some strategies for picking a pivot.

• Always pick the first element: If the sequence is sorted in increasing order, then picking
the first element is the same as picking the smallest element. We end up with a lopsided

January 16, 2018 (DRAFT, PPAP)



11.4. QUICKSORT 193

Algorithm 11.7. [Quicksort]

quicksort a =

if |a| = 0 then a

else
let
p = pick a pivot from a

a1 = 〈x ∈ a | x < p 〉
a2 = 〈x ∈ a | x = p 〉
a3 = 〈x ∈ a | x > p 〉
(s1, s3) = (sort a1 || sort a3)

in
s1 ++ a2 ++ s3

end

Example 11.8. An example run of quicksort along with its pivot tree.

3

2

1

6

5

4

7

8

Keys

Example Run

< 7, 4, 2, 3, 5, 8, 1, 6>

< 7, 4, 5, 8, 6>< 2, 1 >

< 1 > < 7, 8 >< 5, 4>

< 4 > < 8 >

recursion tree of depth n. The total work isO(n2) since n−i keys will remain at level i and
hence we will do n−i−1 comparisons at that level for a total of

∑n−1
i=0 (n−i−1). Similarly,

if the sequence is sorted in decreasing order, we will end up with a recursion tree that is
lopsided in the other direction. In practice, it is not uncommon for a sort function input
to be a sequence that is already sorted or nearly sorted.

• Pick the median of three elements: Another strategy is to take the first, middle, and
the last elements and pick the median of them. For sorted lists the split is even, so each
side contains half of the original size and the depth of the tree is O(log n). Although this

January 16, 2018 (DRAFT, PPAP)



194 CHAPTER 11. RANDOMIZED ALGORITHMS

strategy avoids the pitfall with sorted sequences, it is still possible to be unlucky, and
in the worst-case the costs and tree depth are the same as the first strategy. This is the
strategy used by many library implementations of quicksort. Can you think of a way to
slow down a quicksort implementation that uses this strategy by picking an adversarial
input?

• Pick an element randomly: It is not immediately clear what the depth of this is, but
intuitively, when we choose a random pivot, the size of each side is not far from n/2
in expectation. This doesn’t give us a proof but it gives us hope that this strategy will
result in a tree of depth O(log n) in expectation or with high probability. Indeed, picking
a random pivot gives us expected O(n log n) work and O(log2 n) span for quicksort and
an expected O(log n)-depth tree, as we will show.

Analysis of Quicksort

To develop some intuition for the span analysis, let’s consider the probability that we split the
input sequence more or less evenly. If we select a pivot that is greater than tn/4 and less than
t3n/4 then X(n) is at most 3n/4. Since all keys are equally likely to be selected as a pivot this
probability is 3n/4−n/4

n = 1/2. The figure below illustrates this.

tn/4 t 3n/4

n/2 keysn/4 keys n/4 keys

This observations implies that at each level of the call tree (every time a new pivot is se-
lected), the size of the input to both calls decrease by a constant fraction (of 3/4). At every two
levels, the probability that the input size decreases by 3/4 is the probability that it decreases at
either step, which is at least 1 − 1

2 ·
1
2 = 3

4 , etc. More generally, after m such steps, the prob-
ability that the input size decreases by a factor of 3/4 is 1 − 1

2

m. Thus the probability that the
input size decreases by a factor of 3/4 approaches 1 quickly. For example if m = 10 then this
probability is 0.999. Thus we can conclude that quicksort behaves like a balanced divide and
conquer algorithm and it should complete after c log n levels for some constant c.

We now make this intuition more precise. There are many methods of analysis that we
can use. In the rest of this section, we consider one in detail, which is based on counting, and
outline another, which is based establishing a recurrence, which can then be solved.

For the analysis, we assume a priority-based selection technique for pivots. At the start of
the algorithm, we assign each key a random priority uniformly at random from the real interval
[0, 1] such that each key has a unique priority. We then pick in Line 5 the key with the highest
priority. Notice that once the priorities are decided, the algorithm is completely deterministic.
In addition, we assume a version of quicksort that compares the pivot p to each key in S once
(instead of 3 times, once to generate each of a1, a2, and a3).

January 16, 2018 (DRAFT, PPAP)



11.4. QUICKSORT 195

Exercise 11.9. Rewrite the quicksort algorithm so to use the comparison once when
comparing the pivot with each key at a recursive call.

Example 11.10. Quicksort with priorities and its call tree, which is a binary-search-tree,
illustrated.

3

2

1

6

5

4

7

8

Keys

Example Run

< 7, 4, 2, 3, 5, 8, 1, 6 >

< 7, 4, 5, 8, 6>< 2, 1 >

< 1 > < 7, 8 >< 5, 4>

< 4 > < 8 >

Priorities < 0.3, 0.2, 0.7, 0.8, 0.4, 0.1, 0.5 , 0.6 >

Exercise 11.11. Convince yourself that the two presentations of randomized quicksort
are fully equivalent (modulo the technical details about how we might store the priority
values).

Before we get to the analysis, let’s observe some properties of quicksort. For these observa-
tions, it might be helpful to consider the example shown above.

• In quicksort, a comparison always involves a pivot and another key.

• Since, the pivot is not sent as part of the input to a recursive call, a key is selected to be a
pivot at most once.

• Each key is selected to be pivot.

Based on these observations, we conclude that each pair of keys is compared at most once.
1

Expected work for Quicksort. We are now ready to analyze the expected work of random-
ized quicksort by counting how many comparisons quicksort it makes in expectation. We
introduce a random variable

Y (n) = number of comparisons quicksort makes on input of size n,
1We need only the first two observations to establish this conclusion.

January 16, 2018 (DRAFT, PPAP)



196 CHAPTER 11. RANDOMIZED ALGORITHMS

t i t j

pp pp

=

p

=

Figure 11.2: The possible relationships between the selected pivot p, ti and tj illustrated.

and we are interested in finding an upper bound on E [Y (n)]. In particular we will show it is in
O(n log n). E [Y (n)] will not depend on the order of the input sequence.

Consider the final sorted order of the keys t = sort(a) and let pi be the priority we chose for
the element ti. Consider two positions i, j ∈ {1, . . . , n} in the sequence t and define following
random variable

Xij =

{
1 if ti and tj are compared by quicksort
0 otherwise

Since in any run of quicksort, each pair of keys is compared at most once, Y (n) is equal to the
sum of all Xij ’s, i.e.,

Y (n) ≤
n∑

i=1

n∑
j=i+1

Xij

Note that we only need to consider the case that i < j since we only want to count each
comparison once. By linearity of expectation, we have

E [Y (n)] ≤
n∑

i=1

n∑
j=i+1

E [Xij ]

Since each Xij is an indicator random variable, E [Xij ] = Pr [Xij = 1].

To compute the probability that ti and tj are compared (i.e., Pr [Xij = 1]), let’s take a closer
look at the quicksort algorithm to gather some intuitions. Notice that the first recursive call
takes as its pivot p the element with highest priority. Then, it splits the sequence into two parts,
one with keys larger than p and the other with keys smaller than p. For each of these parts,
we run quicksort recursively; therefore, inside it, the algorithm will pick the highest priority
element as the pivot, which is then used to split the sequence further.

For any one call to quicksort there are three possibilities (illustrated in Figure 11.2) for
Xij , where i < j:

• The pivot (highest priority element) is either ti or tj , in which case ti and tj are compared
and Xij = 1.

• The pivot is element between ti and tj , in which case ti is in a1 and tj is in a3 and ti and
tj will never be compared and Xij = 0.

January 16, 2018 (DRAFT, PPAP)



11.4. QUICKSORT 197

• The pivot is less than ti or greater than tj . Then ti and tj are either both in a1 or both in a3,
respectively. Whether ti and tj are compared will be determined in some later recursive
call to quicksort.

With this intuition in mind, we can establish the following claim.

Claim 11.12. For i < j, ti and tj are compared if and only if pi or pj has the highest
priority among {pi, pi+1, . . . , pj}.

Proof. Assume first that ti (tj) has the highest priority. In this case, all the elements in the
subsequence ti . . . tj will move together in the call tree until ti (tj) is selected as pivot. When it
is selected as pivot, ti and tj will be compared. This proves the first half of the claim.

For the second half, assume that ti and tj are compared. For the purposes of contradiction,
assume that there is a key tk, i < k < j with a higher priority between them. In any collection of
keys that include ti and tj , tk will become a pivot before either of them. Since ti ≤ tk ≤ tj it will
separate ti and tj into different buckets, so they are never compared. This is a contradiction;
thus we conclude there is no such tk.

Therefore, for ti and tj to be compared, pi or pj has to be bigger than all the priorities in
between. Since there are j − i + 1 possible keys in between (including both i and j) and each
has equal probability of being the highest, the probability that either i or j is the highest is
2/(j − i+ 1). Therefore,

E [Xij ] = Pr [Xij = 1]

= Pr [pi or pj is the maximum among {pi, . . . , pj}]

=
2

j − i+ 1
.

The bound indicates that the closer two keys are in the sorted order (t) the more likely it is
that they are compared. For example, the keys ti is compared to ti+1 with probability 1. It is
easy to understand why if we consider the corresponding pivot tree. One of ti and ti+1 must
be an ancestor of the other in the pivot tree: there is no other element that could be the root of
a subtree that has ti in its left subtree and ti+1 in its right subtree. Regardless, ti and ti+1 will
be compared.

If we consider ti and ti+2 there could be such an element, namely ti+1, which could have ti
in its left subtree and ti+2 in its right subtree. That is, with probability 1/3, ti+1 has the highest
probability of the three and ti is not compared to ti+2, and with probability 2/3 one of ti and
ti+2 has the highest probability and, the two are compared. In general, the probability of two
elements being compared is inversely proportional to the number of elements between them
when sorted. The further apart the less likely they will be compared. Analogously, the further
apart the less likely one will be the ancestor of the other in the related pivot tree.

January 16, 2018 (DRAFT, PPAP)



198 CHAPTER 11. RANDOMIZED ALGORITHMS

Hence, the expected number of comparisons made in randomized quicksort is

E [Y (n)] ≤
n−1∑
i=1

n∑
j=i+1

E [Xij ]

=

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=

n−1∑
i=1

n−i+1∑
k=2

2

k

≤ 2n
n−1∑
i=1

Hn

= 2nHn ∈ O(n log n).

Note that in the derivation of the asymptotic bound, we used the fact that Hn = lnn+O(1).

Indirectly, we have also shown that the average work for the basic deterministic quicksort
(always pick the first element) is also O(n log n). Just shuffle the data randomly and then apply
the basic quicksort algorithm. Since shuffling the input randomly results in the same input
as picking random priorities and then reordering the data so that the priorities are in decreas-
ing order, the basic quicksort on that shuffled input does the same operations as randomized
quicksort on the input in the original order. Thus, if we averaged over all permutations of
the input the work for the basic quicksort is O(n log n) on average.

Expected span of Quicksort. We now analyze the span of quicksort. All we really need to
calculate is the depth of the pivot tree, since each level of the tree has span O(log n)—needed
for the filter. We argue that the depth of the pivot tree is O(log n) by relating it to the number
of contraction steps of the randomized select we considered in Section ??. We refer to the ith

node of the pivot tree as the node corresponding to the ith smallest key. This is also the ith node
in an in-order traversal.

Claim 11.13. The path from the root to the ith node of the pivot tree is the same as the
steps of select on k = i. That is to the say that the distribution of pivots selected along
the path and the sizes of each problem is identical.

The reason this is true, is that select is the same as quicksort except that it only goes
down one of the two recursive branches—the branch that contains the kth key. Recall that for
select, we showed that the length of the path is more than 10 lg n with probability at most
1/n3.15. This means that the length of any path being longer that 10 lg n is tiny. This does not
suffice to conclude, however, that there are no paths longer than 10 lg n, because there are many
paths in the pivot tree, and because we only need one to be long to impact the span. Luckily,
we don’t have too many paths to begin with. We can take advantage of this property by using
the union bound, which says that the probability of the union of a collection of events is at most
the sum of the probabilities of the events. To apply the union bound, consider the event that

January 16, 2018 (DRAFT, PPAP)



11.4. QUICKSORT 199

the depth of a node along a path is larger 10 lg n, which is 1/n3.5. The total probability that any
of the n leaves have depth larger than 10 lg n is

Pr [depth of quicksort pivot tree > 10 lg n] ≤ n

n3.15
=

1

n2.15
.

We thus have our high probability bound on the depth of the pivot tree.

The overall span of randomized quicksort is therefore O(log2 n) with high probability.
As in select, we can establish an expected bound by using the total expectation theorem. We
leave this as an exercise to the reader.

Alternative Analysis. Another way to analyze the work of quicksort is to write a recur-
rence for the expected work (number of comparisons) directly. This is the approach taken by
Tony Hoare in his original paper. For simplicity we assume there are no equal keys (equal keys
just reduce the cost). The recurrence for the number of comparisons Y (n) done by quicksort
is then:

Y (n) = Y (X(n)) + Y (n−X(n)− 1) + n− 1

where the random variable Y (n) is the size of the set a1 (we use X(n) instead of Yn to avoid
double subscripts). We can now write an equation for the expectation of X(n).

E [Y (n)] = E [Y (X(n)) + Y (n−X(n)− 1) + n− 1]

= E [Y (X(n))] + E [Y (n−X(n)− 1)] + n− 1

=
1

n

n−1∑
i=0

(E [Y (i)] + E [Y (n− i− 1)]) + n− 1

where the last equality arises since all positions of the pivot are equally likely, so we can just
take the average over them. This can be by guessing the answer and using substitution. It gives
the same result as our previous method. We leave this as exercise.

We can use a similar strategy to analyze span. Recall that in randomized quicksort, at
each recursive call, we partition the input sequence a of length n into three subsequences a1,
a2, and a3, such that elements in the subsequences are less than, equal, and greater than the
pivot, respectfully. Let the random variable X(n) = max{|a1|, |a2|}, which is the size of larger
subsequence. The span of quicksort is determined by the sizes of these larger subsequences.
For ease of analysis, we will assume that |a2| = 0, as more equal elements will only decrease
the span. As this partitioning uses filter we have the following recurrence for span for input
size n

S(n) = S(X(n)) +O(log n).

For the analysis, we shall condition the span on the random variable denoting the size of
the maximum half and apply the total expectation theorem.

January 16, 2018 (DRAFT, PPAP)



200 CHAPTER 11. RANDOMIZED ALGORITHMS

E [S(n)] =
n∑

m=n/2

Pr [X(n) = m] · E [S(n) | (X(n) = m)].

The rest is algebra

E [an] =
n∑

m=n/2

Pr [M(n) = m] · E [S(n) | (M(n) = m)]

≤ Pr
[
X(n) ≤ 3n

4

]
· E
[
S(

3n

4
)

]
+ Pr

[
X(n) >

3n

4

]
· E [S(n)] + c · log n

≤ 1

2
E
[
S(

3n

4
)

]
+

1

2
E [S(n)]

=⇒ E [S(n)] ≤ E
[
S(

3n

4
)

]
+ 2c log n.

This is a recursion in E [S(·)] and solves easily to E [S(n)] = O(log2 n).

Remark 11.14. Quicksort is one of the earliest and most famous algorithms. It was in-
vented and analyzed by Tony Hoare around 1960. This was before the big-O notation
was used to analyze algorithms. Hoare invented the algorithm while an exchange stu-
dent at Moscow State University while studying probability under Kolmogorov—one
of the most famous researchers in probability theory. The analysis we will cover is dif-
ferent from what Hoare used in his original paper, although we will mention how he
did the analysis. It is interesting that while Quicksort is often used as an quintessential
example of a recursive algorithm, at the time, no programming language supported
recursion and Hoare spent significant space in his paper explaining how to simulate
recursion with a stack.

We note that our presentation of quicksort algorithm shown in Algorithm 11.7 dif-
fers from Hoare’s original version which sequentially partitioned the input by using
two fingers that moved from each end and by swapping two keys whenever a key was
found on the left greater than the pivot and on the right less than the pivot.

January 16, 2018 (DRAFT, PPAP)


	Randomized Algorithms
	Expectation versus High Probability
	Finding The Two Largest
	Order statistics
	Quicksort


